Hyperinvariant multiscale entanglement renormalization ansatz: Approximate holographic error correction codes with power-law correlations

نویسندگان

چکیده

We consider a class of holographic tensor networks that are efficiently contractible variational ansatze, manifestly (approximate) quantum error correction codes, and can support power-law correlation functions. In the case when network consists single type also acts as an erasure code, we show it cannot be both locally sustain Motivated by this no-go theorem, desirability local contractibility for efficient ansatz, provide guidelines constructing consisting multiple types tensors correlation. explicit construction one such network, which approximates HaPPY pentagon code in limit where parameters taken to small.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Entanglement Renormalization Ansatz

The goal of this paper is to demonstrate a method for tensorizing neural networks based upon an efficient way of approximating scale invariant quantum states, the Multi-scale Entanglement Renormalization Ansatz (MERA). We employ MERA as a replacement for linear layers in a neural network and test this implementation on the CIFAR-10 dataset. The proposed method outperforms factorization using te...

متن کامل

Compact Neural Networks based on the Multiscale Entanglement Renormalization Ansatz

The goal of this paper is to demonstrate a method for tensorizing neural networks based upon an efficient way of approximating scale invariant quantum states, the Multi-scale Entanglement Renormalization Ansatz (MERA). We employ MERA as a replacement for linear layers in a neural network and test this implementation on the CIFAR-10 dataset. The proposed method outperforms factorization using te...

متن کامل

Entanglement and Approximate Quantum Error Correction

The possibility of performing quantum error correction obviously lies behind and justifies the vast efforts made up to now in order to develop quantum computation techniques, since it allows fault-tolerant computationeven when quantum systems—in fact extremely sensitive to noise—are considered as the basic carriers of information. Besides well-known algebraic conditions for exact quantum error ...

متن کامل

Scaling of entanglement entropy in the (branching) multiscale entanglement renormalization ansatz

We investigate the scaling of entanglement entropy in both the multiscale entanglement renormalization ansatz (MERA) and in its generalization, the branching MERA. We provide analytical upper bounds for this scaling, which take the general form of a boundary law with various types of multiplicative corrections, including power-law corrections all the way to a bulk law. For several cases of inte...

متن کامل

Quantum Error-Correction Codes on Abelian Groups

We prove a general form of bit flip formula for the quantum Fourier transform on finite abelian groups and use it to encode some general CSS codes on these groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2022

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevd.105.026018